The STklos Virtual Machine

Jeronimo Pellegrini

Table of Contents

. The bytecode

. Value register

. Stack

. Local variables
. Deep variables

D U1 W N

. Global variables
6.1. UGLOBAL_{REF,SET} and the checked global table
7. Operations
7.1. Arithmetic
7.2. Increment and decrement val
7.3. Comparisons
7.4. Constructors
7.5. Structure references
8. Control flow
9. Closures, let, and related
9.1. let
10. Miscelannea
10.1. Creating closures and procedures
10.2. Procedure calls
11. Modules
12. vm.c
12.1. The global lock
12.2. run_vm(vm_thread *vm)

13. Continuations

© N o W

12
12
15
15
17
17
18
19
21
22
22
23
24
25
29
31
31
32
33

This is the documentation for the opcodes of the STklos virtual machine. The VM
implementation is contained in the files src/vm.h and src/vm.c.

The VM has a stack, which in the source code is accessed using the C functions push(elt) and pop().
Each VM thread also has:

» STk_instr *pc, the program counter

* SCM *fp, the frame pointer

* SCM *sp, the Scheme stack pointer

e SCM *stack, the Scheme stack

* int stack_len, the length of the stack

» SCM val, a register for the current value

* SCM vals[], a register for multiple values

* int valc, the number of multiple values

* SCM r1, r2two registers

¢ SCM env, the current environment

e SCM current_module, the current module

e SCM 1iport, oport, eport, the current input, output and error ports

e SCM scheme_thread, the Scheme thread associated with this thread

Of these, only a few are relevant to understanding the bytecode — these are the value registers and
the stack.

Chapter 1. The bytecode

STklos bytecode is a sequence of 16-bit integers. You can see the opcodes of a compiled thunk with

(disassemble (lambda ()))

and the opcodes of an expression with

With an extra #t argument, dissasemble-proc will show constants:

(disassemble-expr 'expr)

(disassemble-expr "abc")

000: CONSTANT 0
002:

(disassemble-expr "abc" #t)

000: CONSTANT 0
002:

Constants:
0: "abc"

When we make a closure with the lambda, we’ll always see a RETURN at the end of the output:

stklos> (disassemble (lambda () '()))

000: IM-NIL
001: RETURN

In the above example, one opcode loads the NIL value to the register and another opcode
"RETURN 's. This return is from the lambda.

Chapter 2. Value register

The simpler opcodes are those that carry with them an immediate value. These operations will copy
their value to the val register in the VM.

IM_FALSE
IM_TRUE
IM_NIL
IM_MINUST
IM_ZERO
IM_ONE
IM_VOID

Examples:

(disassemble-expr 1)

000: IM-ONE

(disassemble (lambda () #f 1))

000: IM-FALSE
001: IM-ONE
002: RETURN

Opcodes for small integers and constants do the same, but they take a little longer to execute, since
they need to perform some small operations.

SMALL _INT
CONSTANT

(disassemble-expr 5)

000: SMALL-INT 5

Small integers are not the same as fixnums! A small integer is an integer number that fits in 16 bits
(that is, in one bytecode element). The fixnum range depends on the size of long in the platform
being used.

Suppose STklos has been compiled on a 64 bit system and also ona 32 bit system. The ranges for

w

small ints and fixnums are:

small integer (on both): [-27M15, +2A15 - 1]
fixnum (long is 32-bit): [-2729, +2729 - 1]
fixnum (long is 64-bit): [-2761, +2761 - 1]

The expression above, 5, is compiled into the bytes

00 08 00 05

where 00 08 is the opcode for ‘small int'', and ‘00 05 is the argument (the small integer, 5).

Small integers are compiled into the bytecode. Fixnums, bignums, strings are stored outside of the
bytecode, and the instruction CONSTANT takes as argument an index into the constants vector.

The expression 50000 is not a small integer, so it is compiled as a constant:

(disassemble-expr 50000 #t)
000: CONSTANT 0
002:

Constants:
0: 50000

Zero is the index of 50000 in the constants vector.

The above code is compiled into bytecode as

00 09 00 00

where 00 09 means CONSTANT and 00 00 is the index into the constants vector.
Another clarifying example:

(disassemble-expr ’(values 50000 " “abc") #t)

000: PREPARE-CALL

001: CONSTANT-PUSH 0
003: CONSTANT-PUSH 1
005: GREF-INVOKE 22
008:

Constants:

0: 50000

1: "abc"

2: values

The bytecode is

37 85085186 22

Here,

e 85 0 is CONSTANT-PUSH 0 (0 = first element of the vector)
e 85 11is CONSTANT-PUSH 1 (1 = second element)

* 86 2 2is GREF-INVOKE 2 2 (2 = number, arg to "values, next 2 = third element of vector)

Chapter 3. Stack

The following opcodes are similar to the immediate-value ones, except that, instead of copying their
values to the val register, they push the value on the stack.

FALSE_PUSH
TRUE_PUSH
NIL_PUSH
MINUS1_PUSH
ZERO_PUSH
ONE_PUSH
VOID_PUSH

INT_PUSH
CONSTANT_PUSH

The POP and PUSH move objects between stack and value register.

POP ; move top of stack to val register
PUSH ; store val register on top of stack

Chapter 4. Local variables

The LOCAL_REF opcodes will load the values of variables from the current environment (the *local"'
variables) on the ‘val register.

LOCAL_REF@
LOCAL_REF1
LOCAL_REF2
LOCAL_REF3
LOCAL_REF4
LOCAL_REF

Examples:

(disassemble (lambda (a) a))

000: LOCAL-REF@
001: RETURN

(disassemble (lambda (a b) a))

000: LOCAL-REF1
001: RETURN

There are opcodes for five fixed positions only, so after that another opcode, LOCAL_REF, needs an
argument:

(disassemble (lambda (a b c d e f) a))

000: LOCAL-REF 5
002: RETURN

The following opcodes are similar to the local reference ones, except that, instead of copying their
values to the val register, they push the value on the stack.

LOCAL_REF@_PUSH
LOCAL_REF1_PUSH
LOCAL_REF2_PUSH
LOCAL_REF3_PUSH
LOCAL_REF4_PUSH

~

The following opcodes are analogous to the local reference ones, but instead of loading values, they
store the value of the val register on the local variables

LOCAL_SET®
LOCAL_SET1
LOCAL_SET2
LOCAL_SET3
LOCAL_SET4
LOCAL_SET

Chapter 5. Deep variables

Variables which are visible but not in the immediately accessible environment are accessed with
the DEEP opcodes.

DEEP_LOCAL_REF
DEEP_LOCAL_SET
DEEP_LOC_REF_PUSH

STklos organizes local environments as this: each level has a maximum of 256 variables. Both the
level and the address of local variables are encoded in a single 16-bit integer, as "256v1+v2". For
example, 2*256 + 03 = 0x0203. The first byte, 0x02, identifies the level, and the second byte, 0x03,
identifies the variable.

The VM will, then, do something like this to access a deep local variable:

for (level - FIRST_BYTE(info); level; level -)

e - (SCM) FRAME_NEXT(e);

vm--val - FRAME_LOCAL(e, SECOND_BYTE(info));

Here, info is the information to access the variable (a uint16_t number, as every opcode and
operand used in the VM). FIRST_BYTE gets the level; SECOND_BYTE gets the var address.

Examples:

(disassemble

(let ((a 10))
(lambda () a)))

000: DEEP-LOCAL-REF 256
002: RETURN

(disassemble
(let ((a 10))
(lambda ()
(set! a 20))))
000: SMALL-INT 20
002: DEEP-LOCAL-SET 256
004: RETURN

In the following example, the value of a is fetched from a deep environment and pushed onto the
stack, so it can be used by the comparison opcode IN-NUMEQ:

(disassemble

(let ((a 10))

(lambda ()
(= a 20))))

000: DEEP-LOC-REF-PUSH 256

002: SMALL-INT 20
004: IN-NUMEQ
005: RETURN

The following example shows a variable in a deeper level.

(disassemble
(let ((c 4)
(b 3))
(lambda ()
(let ((a 2))
c))))

000: PREPARE-CALL

001: INT-PUSH 2
003: ENTER-TAIL-LET 1
005: DEEP-LOCAL-REF 513
007: RETURN

The number 513 is composed of the bytes 0x02 and 0x01: #x0201 = 513. This means "the variable of
index 1 in level 2" (index 1 is for ¢, and index 0 is for b).

The code for (let ((c 4) (b 3) is not shown, but it can bee seen with disassemble-expr:

(disassemble-expr
(let ((c 4)
(b 3))

(lambda ()
(let ((a 2))
c))) #t)

000: PREPARE-CALL

001: INT-PUSH 4
003: INT-PUSH 3
005: ENTER-LET 2

10

007:
010:
011:
013:
015:
017:
018:

CREATE-CLOSURE
PREPARE-CALL
INT-PUSH
ENTER-TAIL-LET
DEEP-LOCAL-REF
RETURN
LEAVE-LET

90

513

; ==> 018

.
I

11

Chapter 6. Global variables

Global variables can be read and set with the following opcodes:

GLOBAL-REF
GLOBAL-SET

Examples:

6

(disassemble-expr 'my-cool-global-variable) #t)

000: GLOBAL-REF 0

Constants:
0: my-cool-global-variable

(disassemble-expr '(set! my-cool-global-variable #f) #t)

000: IM-FALSE
001: GLOBAL-SET 0

Constants:
0: my-cool-global-variable

.1. UGLOBAL_{REF,SET} and the checked global table

The instructions GLOBAL_REF and GLOBAL_SET do the following:

1
2
3
4.
5
6

. Acquire the mutex
. Fetch the index of the global variable

. Lookup the variable in the current environment (that is, consult a hash table in amodule)

Verify if the variable is mutable or not

. Finally, do the real get or set operation

. Release the lock

Steps 1-4 are quite expensive, and shouldn’t need to be done every time the variable is accessed.
Thus, the STklos VM keeps a table with checked globals. The first time a variable is referenced, the
VM goes through all those steps, but before releasing the lock there is another step:

5"
UG

12

Patch the code, changing the GLOBAL_REF or GLOBAL_SET insrtuction into a UGLOBAL_REF or
LOBAL_SET.

For example, in GLOBAL_SET this step is performed by the following two lines:

vm--pc[-1] - add_global(CDR(ref));
vm--pc[-2] - UGLOBAL_SET;

See that what is being changed are the two previous bytecode elements, pc[-1] and pc[-2].

So the code

would perhaps be translated into

000: SMALL-INT
002: GLOBAL-SET 5

where 5 is the index of the variable a (as a global).
Then after the first time the GLOBAL_SET instruction is performed, the code will patch itself and

change into

000: SMALL-INT 2
002: UGLOBAL-SET

where n is the index of this global variable in a local table.

The instruction GLOBAL_SET takes two integers to be represented, so when pc[-1] and pc[-2] are
changed, what is being changed is the previous argument (5 — n) and the previous instruction
(GLOBAL_SET — UGLOBAL_SET).

And, of course, the n-th element of the table contains the address of the variable to be set. This is
made clear in the code of UGLOBAL SET:

CASE(UGLOBAL_SET) {

RELEASE_POSSIBLE_LOCK;

fetch_global() - vm ~val; NEXTO;
}

The checked globals table is defined earlier in vm.c:

static SCM" " checked_globals;

13

and the function add_global(SCM ref) will add a global to the table.
Of course, this is also done in all other UGREF_* instructions in a similar way.

That is why, even using a hash table, access to global variables happens with speed not too far from
that of access to local variables in STklos. This can be seen in the following rudimentary
benchmark:

(let ((a 0)
(b 2))
(time
(repeat _000_000
(set! a b))))

(define a 0)
(define b 2)

(time
(repeat _000_000
(set! a b)))

14

Chapter 7. Operations

7.1. Arithmetic

The operations take the top of stack and val as operands, and leave the result on val.

IN_ADD2
IN_SUB2
IN_MUL2
IN_DIV2

(disassemble-expr '(+ a 3) #t)

000: GLOBAL-REF 0
002: IN-SINT-ADD2 3
Constants:

0: a

First the value of a (which is the zero-th local variable) is pushed onto the stack. Then, DEEP-LOCAL-
REF brings the value of x, and IM-ADD2 adds the two values, leaving the result on the local variable
register.

For fixnums, the analogous opcodes are:

IN_FXADD2
IN_FXSUB2
IN_FXMUL2
IN_FXDIV2

(disassemble-expr '(fx+ v 3))

000: GLOBAL-REF 0
002: IN-SINT-FXADD2 3
Constants:

0: v

The following variant of those opcodes do not use the stack. They operate on val and an argument:

IN_SINT_ADD2

IN_SINT_SUB2
IN_SINT_MUL2
IN_SINT_DIV2

Example:

(disassemble-expr '(+ a 2))

000: GLOBAL-REF 0
002: IN-SINT-ADD2 2
Constants:

0: a

With a as a local variable:

(disassemble (lambda (a) (+ a 2)))

000: LOCAL-REF@
001: IN-SINT-ADD2 2
003: RETURN

First, the value of a is put on val; then it is summed with 2, which comes as an argument to the
opcode IN-SINT-ADD2.

These also have fixnum variants:

IN_SINT_FXADD2
IN_SINT_FXSUB2
IN_SINT_FXMUL2
IN_SINT_FXDIV2

Example:

(disassemble-expr '(fx+ a 2))

000: GLOBAL-REF 0
002: IN-SINT-FXADD2 2
Constants:

0: a

7.2. Increment and decrement val

IN_INCR
IN_DECR

7.3. Comparisons

These compare the top of stack with val, and leave a boolean on val.

IN_NUMEQ ;o pop() == val ?
IN_NUMDIFF ; ! pop() == val ?
IN_NUMLT ; pop < val ?
IN_NUMGT ; pop > val ?
IN_NUMLE ; pop <= val ?
IN_NUMGE ; pop >= val ?

Example:

(disassemble-expr ' (>= a 2))

000: GLOBAL-REF-PUSH 0
002: SMALL-INT 2
004: IN-NUMGE

Constants:
0: a

There are also opcodes for equal?, eqv? and eq?:

IN_EQUAL
IN_EQV
IN_EQ

Example:

(disassemble-expr '(eq? a 2))

000: GLOBAL-REF-PUSH 0
002: SMALL-INT 2
004: IN-EQ

Constants:

The dissassemble procedures will not, however, show the names of symbols or values of strings
(disassemble-expr does, when passed the extra #t argument).

(disassemble (lambda (a) (eq? a 'hello-i-am-a-symbol)))

000: LOCAL-REF@-PUSH

001: CONSTANT 0
003: IN-EQ
004: RETURN

(disassemble-expr '(eq? a 'hello-i-am-a-symbol) #t)

000: GLOBAL-REF-PUSH 0
002: CONSTANT 1
004: 1IN-EQ

005:

Constants:

0: a

1: hello-i-am-a-symbol

7.4. Constructors

These will build structures with the value in val and store the structure (that is, the tagged word
representing it) again on val.

IN_CONS
IN_CAR
IN_CDR
IN_LIST

Examples:

(disassemble-expr '(cons "a" "b") #t)

000: CONSTANT-PUSH 0
002: CONSTANT 1
004: IN-CONS

005:

18

Constants:
0: Ilall
1: llbll

(disassemble (lambda (a b) (cons a b)))

000: LOCAL-REF1-PUSH
001: LOCAL-REF@

002: IN-CONS

003: RETURN

The element to be consed is pushed on the stack; then the second element is loaded on val, and then
IN-CONS is called.

(disassemble (lambda (a) (list a)))

000: LOCAL-REF@-PUSH
001: IN-LIST 1
003: RETURN

(disassemble-expr '(car a) #t)

000: GLOBAL-REF 0
002: IN-CAR
003:

Constants:

0: a

7.5. Structure references

The following opcodes access and set elements of strings and vectors.

IN_VREF
IN_SREF
IN_VSET
IN_SSET

V stands for vector, S stands for string; then, REF and SET mean reference'’ and set".

The instructions will use the object in the stack and the index from the val register.

Examples

(disassemble

(let ((a #(0)))
(lambda () (vector-ref a 2))))

000: DEEP-LOC-REF-PUSH 256

002: SMALL-INT 2
004: IN-VREF
005: RETURN

In the following example, the CONSTANT-PUSH is including a reference to the string on the stack.

(disassemble-expr '(string-ref "abcde" 3) #t)

000: CONSTANT-PUSH 0
002: SMALL-INT 3
004: IN-SREF

005:

Constants:

0: "abcde"

When setting a value, the reference to the vector or string and the index go on the stack (index
below the reference to the object — the index is popped first), and the value goes on val, then the
setting opcode is used:

(disassemble

(let ((v (vector a b /c)))
(lambda () (vector-set! v

000: DEEP-LOC-REF-PUSH 256 ; push ref. to vector

002: INT-PUSH 2 ; push index

004: SMALL-INT 10 ; put new value in val
006: IN-VSET ;oset it!

007: RETURN

20

Chapter 8. Control flow

The following opcodes have an argument, which is the offset to be added to the program counter.

G0TO ; unconditionally jump

JUMP_TRUE ; jump if val 1is true

JUMP_FALSE ; jump if val is false

JUMP_NUMDIFF ; jump if ! pop() = val (for numbers)
JUMP_NUMEQ ; jump if pop() = val (for numbers)
JUMP_NUMLT ; jump of pop() < val

JUMP_NUMLE ; jump of pop() <= val

JUMP_NUMGT ; jump of pop() > val

JUMP_NUMGE ; jump of pop() >= val

JUMP_NOT_EQ ; jump if pop() not eq? val
JUMP_NOT_EQV ~ ; jump if pop() not eqv? val
JUMP_NOT_EQUAL ; jump if pop() not equal? val

Example:

(disassemble

(lambda () (if #t

000: IM-TRUE

001: JUMP-FALSE 3 1 ==> 006
003: SMALL-INT 2

005: RETURN

006: SMALL-INT 4

008: RETURN

STklos’ disassemble is nice enough to tell you the line number where a jump goes!

21

Chapter 9. Closures, let, and related

9.1. let

The opcodes for ‘entering ‘letl' create new environments and push them on the stack, but do not
update activation records, since there is no procedure call happening. Then, the ‘LEAVE_LET
opcode removes the environment from the stack.

ENTER_LET
ENTER_LET_STAR
ENTER_TAIL_LET
ENTER_TAIL_LET_STAR
LEAVE_LET

Examples:

(disassemble-expr '(list (let ((x 1))

x)) #t)

000: PREPARE-CALL

001: ONE-PUSH

002: ENTER-LET 1
004: LOCAL-REF@

005: LEAVE-LET

006: PUSH
007: IN-LIST 1
Constants:

When the let is in tail position, then the opcode used is the ordinary ENTER_TAIL_LET, and no
LEAVE _LET is needed:

(disassemble
(lambda ()

(let ((x 1))
x)))

000: PREPARE-CALL

001: INT-PUSH 4
002: ENTER-TAIL-LET 1
004: LOCAL-REF@

005: RETURN

22

Chapter 10. Miscelannea

The following opcode does nothing:
NOP
The following sets the docstring and the formal parameter list documentation for a procedure:

DOCSTRG
FORMALS

Examples:

(disassemble-expr '(define (f) "A well-documented function" 5) #t)

000: CREATE-CLOSURE 40 ;; ==> 006
003: SMALL-INT 5

005: RETURN

006: DOCSTRG 0

008: DEFINE-SYMBOL 1

010:

Constants:

0: "A well-documented function"

1: f

(disassemble
(lambda ()

(define (f) "A well-documented function" 5)
)

000: PREPARE-CALL
001: FALSE-PUSH
002: ENTER-TAIL-LET

—_—

004: CREATE-CLOSURE 40 ;; ==>010
007: SMALL-INT 5

009: RETURN

010: DOCSTRG 0

012: LOCAL-SET@

013: SMALL-INT 10

015: RETURN

Here, DOCSTRG seems to have a zero argument because it uses a constant string, and disassemble does

23

not show values of strings and symbol names.

The FORMALS opcode is similar to DOCSTRG, except that it expects a list instead of a string.

(compiler:keep-formals #t)

(disassemble-expr '(define (f a b . c)
"A well-documented function"
(* a 3))
#t)

000: CREATE-CLOSURE 5 -3;; ==> 007
003: LOCAL-REF2

004: IN-SINT-MUL2 3
006: RETURN

007: FORMALS 0
009: DOCSTRG 1
011: DEFINE-SYMBOL 2
013:

Constants:

0: (a b . c)

1: "A well-documented function"
2: f

10.1. Creating closures and procedures

The following opcode creates a closure.
CREATE_CLOSURE

This opcode fetches two parameters:

* the number of instructions ahead that the VM needs to jump to (because what follows is the
code of a closure being created, and it should not be executed, so the VM wull jump over it)

* the closure arity.

Examples:

(disassemble

(lambda ()
(lambda () "Hello")))

000: CREATE-CLOSURE 40 ;,; ==> 006

24

003: CONSTANT 0
005: RETURN
006: RETURN

(disassemble

(Llambda ()
(lambda (x) (* 2 x))))

000: CREATE-CLOSURE 51 ,, ==> 007
003: LOCAL-REF@

004: IN-SINT-MUL2 2

006: RETURN

007: RETURN

(disassemble
(lambda ()

(define (g a b c) 10)
9))

000: PREPARE-CALL
001: FALSE-PUSH

002: ENTER-TAIL-LET 1

004: CREATE-CLOSURE 43 ;,; ==>1010
007: SMALL-INT 10

009: RETURN

010: LOCAL-SET@
011: LOCAL-REF@
012: RETURN

10.2. Procedure calls

The following opcodes are used to make procedure calls:

PREPARE-CALL (PREP_CALL() in vm.c)
INVOKE

TAIL_INVOKE

GREF-INVOKE

GREF-TAIL-INVOKE

PUSH_GREF_INVOKE

PUSH_GREF_TAIL_INV

» PREPARE-CALL pushes an activation record on the stack.

» INVOKE opcodes call procedures — local or global; in tail position or not. The ones with the PUSH_

25

prefix also push an argument onto the stack.

These are handled in the VM as states in the state machine (they are labels used in the CASE's 1in
‘vm/ . c).

In vm.c, all these instructions end up sending the control to the FUNCALL: label, which will then check
what to do depending on the type of call (tc_instance, tc_closure, tc_next_method, tc_apply, or some
primitive, tc_subr---)

The peephole optimizer will combine PUSH, GLOBAL-REF INVOKE instructions, yielding combined
instructions. The following is an excerpt from peephole.stk where these transformations are
documented:

The arguments to the INVOKE-like instructions are:

* INVOKE: n_args (the procedure address is the first item on the stack, so it is not passed as
argument in the code)

* GREF-INVOKE: proc_addr, n_args

* PUSH-GREF-INVOKE: first_arg, proc_addr, n_args (pushes the first and calls the procedure with
n_args arguments form the stack

(disassemble (lambda () (f)))

000: PREPARE-CALL
001: GREF-TAIL-INVOKE 00
004: RETURN

(disassemble (lambda () (f 3)))

000: PREPARE-CALL

001: INT-PUSH 3
003: GREF-TAIL-INVOKE 01
006: RETURN

In the next example, GREF-INVOKE is called with arguments 0 and 0. The first value 0 is the address
of the procedure in the stack. The IN-SINT-ADD2 procedure is called afterwards to sum 3 with the
return from f.

(disassemble (lambda () (+ 3 (f))))

000: PREPARE-CALL

001: GREF-INVOKE 00
004: IN-SINT-ADD2 3
006: RETURN

In the next example, GREF-INVOKE is called with arguments 0 and 2. The value 0 is the address of the
procedure in the stack; 2 is the number of arguments given in this procedure call. The IN-SINT-ADD2
procedure is called afterwards to sum 5 with the return from f.

(disassemble

(lambda (x)
(+ 5 (f x #£))))

000: PREPARE-CALL
001: LOCAL-REF@-PUSH
002: FALSE-PUSH

003: GREF-INVOKE 02
006: IN-SINT-ADD2 5
008: RETURN

Now the next example shows how INVOKE is used to call a procedure that is non-global (it is in the
local environment). The INVOKE instruction will use the first value on the stack as the address of the
procedure (it’s DEEP-LOCAL-REF 256, since f is defined inside the let). The other two arguments to be
popped from the stack are #f (pushed by the FALSE-PUSH instruction) and the global variable vy
(pushed by the instruction GLOBAL-REF-PUSH). After INVOKE calls f, the instruction IN-SINT-ADD2 3
will sum 3 to the result.

(let ((f (lambda (x) x)))
(disassemble

(lambda ()
(+ 3 (fy#£)))))

000: PREPARE-CALL

001: GLOBAL-REF-PUSH 0
003: FALSE-PUSH

004: DEEP-LOCAL-REF 256
006: INVOKE 2

27

28

008:
010:

IN-SINT-ADD2
RETURN

Chapter 11. Modules

The following opcode enters a given module.
SET_CUR_MOD

An SCM object of type module must be in the val resgister.

Example:

(disassemble-expr '(select-module m) #t)

000: PREPARE-CALL

001: CONSTANT-PUSH 0
003: GREF-INVOKE 11
006: SET-CUR-MOD

007:

Constants:

0: m

1: find-module

In the above example, the constants were two symbols: m and find-module. The find-module
procedure, which is called, will leave module m in the val register, which is then used by
SET_CUR_MOD.

The following opcode defines a variable in a module.
DEFINE_SYMBOL

It will define a variable with name set as symbol fetched after the opcode, and value in the val
register.

(disassemble-expr '(define a "abc") #t)

000: CONSTANT 0
002: DEFINE-SYMBOL 1
004:

Constants:

@: "abc"

1: a

29

(disassemble-expr '(define a #f) #t)

000: IM-FALSE
001: DEFINE-SYMBOL 0
003:

Constants:
0: a

30

Chapter 12. vm.c

An important observation:

* apply : there is a DEFINE_PRIMITIVE("apply", -+), but it is not used. It is necessary just so there is
a primitive of the type tc_apply. When the VM finds a primitive of this kind, it'll treat it
differently.

Some basic functions in the VM:

* push(v): pushes v on the stack (the stack pointer is decreased)

* pop(): pops a value from the stack (the stack pointer is increased)

» fetch_next() fetches the next opcode, increasing the PC

» fetch_const() fetches the next opcode and uses it as index for a constant

* look_const() looks at the current opcode and uses it as index for a constant

» fetch_global() fetches the next opcode and uses it as index for a global variable

* add_global(ref) adds ref to the list of global variables, and returns its index. If it was already
there, the old index is returned. If it was not, a place is allocated for it, and the new index is
returned.

Already covered before:

o SCM STk_C_apply(SCM func, int nargs, --+):applies func, with nargs arguments
o SCM STk_C_apply_Llist(SCM func, SCM 1): applies func, with a list of arguments

o SCM STk_n_values(int n, --): prepares n values in the VM (for the next instruction), and returns
a pointer to the vm»val register

o SCM STk_values2vector(SCM obj, SCM vect): turns a values object into an array with the values

12.1. The global lock

There is one global mutex lock for STklos, called global_lock, declared in vm.c:
MUT_DECL(global_lock); /* the lock to access checked_globals */

As per the comment, its purpose is to discipline access to global variables.
Three macros are used to control the global lock (a mutex):

» LOCK_AND_RESTART will acquire the lock, and decrease the program counter. It will also set a flag
that signals that the lock has been acquired by this thread, and then call NEXT. The name
“AND_RESTART” reflects the fact that it decreases the PC and calls NEXT (for the next
instruction) —so the effect is to start again operating on this instruction, but this time with the
lock.

» RELEASE_LOCK will release the lock, regardless of the thread having it or not. The flag indicating
ownership by this thread is cleared.

31

o RELEASE _POSSIBLE LOCK will release the lock if this thread has it.

12.2. run_vm(vm_thread *vm)

After some initial setup, this function will operate as a state machine. Its basic structure is shown
below.

The CASE symbol is defined differently, depending on the system, but CASE(x) semantically simialar
to case x: (if computed GOTOs are better, then it’s defined as a label instead — see its definition in
vm.c).

for (
byteop = fetch_next()
switch (byteop)
CASE(NOP) NEXT

CASE(IM _FALSE) vm->val = STk _false
CASE(IM_TRUE) vm->val = STk true

CASE(PUSH_GLOBAL_REF)
CASE(GLOBAL_REF)

(several cases here)

FUNCALL: /* we "goto" here for procedure invoking from
other places in the VM */

STk_panic("abnormal exit from the VM")

32

Chapter 13. Continuations

There are undocumented primitives in vm.c that can be used to capture and restore continuations.
They are listed here with their undocumented Scheme counterparts:

e STk _make continuation() — (%make-continuation)

e STk restore_cont(SCM cont, SCM value) — (%restore-continuation cont value)
e STk_continuationp(SCM obj) — (%continuation? obj)

o STk_fresh_continuationp(SCM obj) — (%fresh-continuation? obj)

Continuation is a native type (tc_continuation). A continuation object (defined in vm.h) contains
pointers to the C stack, the Scheme stack and several other data.

Capturing a continuation is carried out by the following steps (these are the actual comments in the
function STk_make_continuation):

. Determine the size of the C stack and the start address

. Determine the size of the Scheme stack

1
2
3. Allocate a continuation object
4. Save the Scheme stack

5

. Save the C stack
Restoring is easier:

1. Restore the Scheme stack

2. Restore the C stack

And, when the C stack is restored, the VM is back to its original state, except for the global variables.

33

	The STklos Virtual Machine
	Table of Contents
	Chapter 1. The bytecode
	Chapter 2. Value register
	Chapter 3. Stack
	Chapter 4. Local variables
	Chapter 5. Deep variables
	Chapter 6. Global variables
	6.1. UGLOBAL_{REF,SET} and the checked global table

	Chapter 7. Operations
	7.1. Arithmetic
	7.2. Increment and decrement val
	7.3. Comparisons
	7.4. Constructors
	7.5. Structure references

	Chapter 8. Control flow
	Chapter 9. Closures, let, and related
	9.1. let

	Chapter 10. Miscelannea
	10.1. Creating closures and procedures
	10.2. Procedure calls

	Chapter 11. Modules
	Chapter 12. vm.c
	12.1. The global lock
	12.2. run_vm(vm_thread *vm)

	Chapter 13. Continuations

