Hacking STklos

Jeronimo Pellegrini



Table of Contents

1. Basic editor configuration

2. Directories

3. Basic debugging
3.1. STK_DEBUG
3.2. Other debugging primitives in Scheme
3.3. C debugging

4. STklos initialization

5. Adding simple modules and SRFIs
5.1. Adding modules
5.2. Module placement in the tree
5.3. Adding SRFIs
5.4. Mixed SRFIs (Scheme and C)
5.5. Documentation

6. Writing primitives in C
6.1. Calling Scheme primitives
6.2. Returning multiple values
6.3. Using multiple returned values
6.4. Errors
6.5. Unboxed types
6.6. Boxed types
6.7. Dynamically loadable modules
6.8. Input and output from C
6.9. Creating new types

7. Continuations

8. The virtual machine

9. Compiler and optimizations
9.1. The compiler
9.2. Peephole optimizer

10. Garbage collection

© N9 9 9 9 9 0 B ks kN

NN NN N R B R R R R Rl |, ) )
NN NN R © 1l uaw NN R, O o o



This is a quick guide to STklos hacking. It’s not detailed, so the document doesn’t
become huge, and also because after understanding the basics, hacking STklos
should not be difficult.



Chapter 1. Basic editor configuration

There is a .editorconfig file in STKklos' root folder, which describes the style to be used, and which is
automatically used when editorconfig is configured ([editorconfig](https://editorconfig.org/) helps
maintain consistentcoding styles for multiple developers working on the same project across

various editors and IDES).


https://editorconfig.org/

Chapter 2. Directories

The subdirectories in the STklos source tree are:

* doc — documentation, written mostly in Skribe

* etc —various sample files for specific needs

* examples — examples (oh, who could tell?)

« ffi-1ibffi (alocal copy)

* gc — the Boehm-Demers-Weiser garbage collector, libgc (a local copy)
* gmp — a slow compatible GNU MP

* 1ib — Scheme files, including from basic things like the boot program up to high-level things like
modules implementing libraries and SRFIs

* pcre—libpcre (a local copy)
* pkgman - the package manager
e src —the STklos core, written in C
e tests - the tests, of course!
* utils — utilities and wrappers
The "local copies" of 1ibffi, 1ibgc and libpcre, as well as the mini-GMP in gmp/ are compiled when

there’s no version of those available in the system, or when you force their use in the configure
script with --with-provided-gc, --with-gmp-1light and so on.



Chapter 3. Basic debugging

3.1. STK_DEBUG

STklos has conditionally-compiled debugging code, which is enabled when the STK_DEBUG variable is
visible to the C compiler. To enable a debug-enabled binary of STklos, configure it passing CFLAGS="-
DSTK_DEBUG" to the configure script:

./configure CFLAGS="-DSTK_DEBUG"

This will enable:

* [misc.c]: (%%debug) which toggles debugging on and off.

* [misc.c]: (%c-backtrace), which produces a backtrace of C function calls.

* [misc.c]: (%test proc), which applies proc without arguments.

* [misc.c]: (%vm -+), which you can customize in src/vm.c to your needs.

* [src/utf8.c]: (%char-utf8-encoding c), which shows how the character c is encoded in UTFS.

o ['src/utf8.c]: (%dump-string s), which shows the bytes in the internal representation of the
string s.

* [src/promise.c]: (%promise-value p), which returns the value of promise p. When not yet forced,
the value will be a procedure, which you can then call. But calling %promise-value p does not
force p, and does not interfere with the rest of the program.

e [src/promise.c]: (%promise-value-set! p v), which sets the value of promise p to v.

Clearly, you can add other primitives useful for debugging guarded by

das necessary.

3.2. Other debugging primitives in Scheme

Even without STK_DEBUG, you can use in your Scheme code:

* (%vm-backtrace) to obtain a trace of Scheme procedure calls

3.3. C debugging

When copiling the C part of STklos, it may be interesting to compile with -g -00 -Wall also:



./configure CFLAGS="-DSTK_DEBUG -g -00 -Wall"

And to use GCC’s static analyzer (with GCC version 11 or later),

./configure CFLAGS="-DSTK_DEBUG -g -00 -Wall -fanalyzer"

To debug STKklos, you can use gdb:

gdb -q src/stklos



Chapter 4. STklos initialization

main is in src/stklos.c, where command line options are parsed and the scheme interpreter is
started:

STk_init_library — performs library initialization. This is done in src/lib.c, which is a very
simple file that just calls several initialization functions. Those functions are defined in different
files under src/;

* build_scheme_args — collects the command line options in the variable %system-state-plist;

STk _load_boot —1loads the boot file (if one is to be loaded);

STk_boot_from_C — actually boots the Scheme interpreter. This function is defined in src/vm.c,
where the STklos virtual machine code is.

In order to include Scheme code for execution during STklos startup, edit 1ib/boot.stk.



Chapter 5. Adding simple modules and SRFIs

5.1. Adding modules

* add your fantastic-module.stk to 1ib/SUBDIR, where SUBDIR could be scheme, srfi or stklos (see
nect subsection)

e include fantastic-module.stk and fantastic-module.ostk in the wvariables SRC _STK and
scheme_0BJS, in 1ib/Makefile.am

 Tests reside in the tests directory. Create a new file in tests directory and include it in the list of
loaded files in do-test.stk

5.2. Module placement in the tree

» STklos modules go into 1ib/stklos
» Scheme (R7RS small or large) libraries go into 1ib/scheme

* SRFIs go into 1ib/srfi

5.3. Adding SRFIs

In order to add SRFI 9999 to STklos,

» add your 9999.stk to 1ib/srfi
e include 9999.stk and 9999.0stk in the variables SRC_STK and SRC_0STK, in 1ib/srfi/Makefile.am

Add a line describing it in 1ib/srfis.stk (the format is described in the file itself).

Tests reside in the tests directory. Add the tests in a file tests/srfis/9999.stk
For new SRFIs, adding its description in 1ib/srfis.stk suffices to update

* the SUPPORTED-SRFIS in the main directory
* launch the tests you added in tests/srfis directory, and

* add an automatically generated documentation for this SRFI

5.4. Mixed SRFIs (Scheme and C)
To add a mixed SRFI 8888,

» Write a 8888.c file and put it in 1ib/srfi
* Write a 8888.stk Scheme file and also put it in 1ib/srfi

¢ Add your mixed SRFI to 1ib/srfi/Makefile.am, in the section ‘SRFIs written in C and Scheme"'
(variables ‘SRC_C, SRC_C_STK, and SRC_SHOBJ



5.4.1. Content of the Scheme file

The Scheme file will be compiled as a byte-code stream embedded in C. Here, the compiled file will
be called $DIR/srfi-170-incl.c. It is built by the utils/tmpcomp script with

../../utils/tmpcomp srfi-170-incl.c $DIR/srfi-170.stk

Note: when the destination file ends with a .c suffix, the tmpcomp command produces a C file instead
of a byte-code file.

You don’t have to pay attention to any particular point in the writing of this file.

5.4.2. Content of the C file

The C file must follow the conventions of dynamically loadable code as shown in the example in the
/etc directory.

In this C file, to use the previously compiled Scheme code, you have to (using SRFI 170 as an
example):

* include the file 170-incl.c at the top of your C file

* add a call to execute the Scheme code just before the MODULE_ENTRY_END directive. This is done
with the following invocation:

module _code);

STk_execute_C_bytecode(__module_consts,

* Add a directive DEFINE_MODULE_INFO at the end of the file. It permits to access some information
of the module (STklos version used to compile the module, exported symbols, ...). For now, this
information is not used, but omitting to add this directive will probably lead to a compiler
warning about an unresolved reference.

As one more example, SRFI 25 has, at the end of the C file:

MODULE_ENTRY_START("srfi/25")

{
SCM module STk _create_module(STk_intern("srfi/25"));

STk_export_all_symbols(module);

ADD_PRIMITIVE_IN_MODULE(...);

STk_execute_C_bytecode(__module_consts, __module_code);

}
MODULE_ENTRY_END




DEFINE_MODULE_INFO

See SRFI-25, SRFI-27 and SRFI-170 as a reference.

5.5. Documentation

5.5.1. Documenting SRFIs in srfi.skb

General documentation is automatically generated for SRFIs. If you need to give a precision specific
to a given SRFI, add it to the end of the doc/skb/srfi.skb file using the gen-srfi-documentation
function.

Note that the documentation is written in Skribe tool which is no more maintained. Consequently,
the documentation will not be generated. The HTML and PDF documentation is rebuilt from time to
time by @egallesio.

5.5.2. Documenting primitives written in C

Before DEFINE_PRIMITIVE, add a comment similar to the others you see in the C files. An example:

DEFINE_PRIMITIVE("bignum?", bignump, subr1, (SCM x))

{
return MAKE BOOLEAN(BIGNUMP(x));

}

Pay attention to the parts of this comment: it begins with the primitive name, then there’s an
explanation, then examples in Scheme. Wrap symbols/identifiers in |. |; use @lisp and @end 1isp@ to
show an example of usage.



Chapter 6. Writing primitives in C

Use the macro DEFINE_PRIMITIVE:

DEFINE_PRIMITIVE("fixnum?", fixnump, subr1, (SCM obj))
{

return MAKE_BOOLEAN(INTP(obj));

}

The arguments for this example are

* Scheme name
¢ C function name (its full name will have the string " * "STk_" prepended to it)
* the type of primitive (in this case, it is a subroutine with one parameter — * * “subr1”

« the arguents, surrounded by parentheses. In this case there is only one argument, ‘obj0', and
its type is "SCM” (which is the type of all Scheme objects in STklos).

Then add it:

ADD_PRIMITIVE(fixnump);

The name passed to ADD_PRIMITIVE is the C function name.

6.1. Calling Scheme primitives

Recall that a primitive is defined like this:

DEFINE_PRIMITIVE("fixnum?", fixnump, subr1, (SCM obj))
{...}

ADD_PRIMITIVE(fixnump);

To use this primitive later in C code, add the STk_ prefix to its C function name:

if (STk_fixnump(obj) STk_false) ...

6.2. Returning multiple values

STk_n_values(n, v1, v2, -+, vn) returns n values from a procedure.

For example, read-1ine (defined in port.c) has these two lines:

10



return STk _n_values(2, res, STk eof)

for when it found the end of the file, and

return STk_n_values(2, res, delim);

for when it did not yet reach EOF, so it returns the line delimiter as second value.

6.3. Using multiple returned values

Just as one can use STk_n_values to produce values, it is also possible to call (from C) a Scheme
procedure that produces a sequence of values and use them from the C code. The function
STk _values2vector (defined in vm.c) does this.

In Scheme, one could to this:

(define (my-proc x y z)

(values (+ x y) (- y 2)))

If we assume that the C SCM variable proc points to the closure my-proc, then we can call it like this:

SCM a - MAKE_INT(10);
SCM b - MAKE_INT(20);
SCM ¢ - MAKE_INT(30);

SCM results - STk _makevect(2, NULL);

VECTOR _DATA(results)[0] = STk false;
VECTOR_DATA(results)[1] - STk _false;

STk_values2vector ( STk_C_apply(proc, 3, a, b, c),
results );

The Scheme vector results will then hold the two returned values.

 If you pass NULL as second argument to STk_values2vector instead of passing a vector, the VM
will allocate a vector with the size of the number of values returned.

 If you do pass a vector to STk_values2vector, then the procedure being called must produce
exactly that number of values (not more, not less), otherwise the VM will signal an error.

11



6.4. Errors

The C function that raises errors is

o STk_error(fmt, argl, arg2, ---) —the STklos error procedure. fmt is a format string, and after it
there are arguments.

But as you can see in the top of several C files, it is useful to define wrappers:

static void error_bad _number(SCM n)

{

STk error("~S is a bad number", n);

}

static void error_at_least 1(void)

{

STk_error("expects at least one argument");

}

static void error_cannot_operate(char “operation, SCM o1, SCM 02)

{

STk_error("cannot perform %s on ~S and ~S", operation, o1, 02);

}

6.5. Unboxed types

The trditional way to representa data in Lisp languages is by tagged objects. A long enough machine
word is used to represent all types, and some bits are reserved to distinguish the type of the object.
In STklos, the two least significant bits are used for this.

* 00 - pointer on an object descriptor (a box)

e 01 - fixnum

10 - small object (characters and others)

11 - small constant (#t, #f, ' (), #eof, #void, dot, close-parenthesis)

The idea is that checking the type of these should be very fast, because it is done at runtime, so to
check wether an object is #eof, one needs only check if obj & 0x4 == 0x3 (but usually, we have
macros for that).

STklos uses C long words so, for example, in a machine where long int is 32 bits long the bit
sequence

0000 0000 0000 0000 0000 0000 0010 0101

is a fixnum (because its two least significant digits are 01, and the value of the fixnum is 9 (because
after discarding the 01 that is on the right of the sequence, the number left is 1001).

12



6.5.1. Booleans

STk_true is the SCM object for #t

STk_false is the SCM object for #f

BOOLEANP(0) checks wether the object o is boolean (the macro actually does (o) == STk_true) ||
((0) == STk _false

MAKE_BOOLEAN(_cond) expands to a conditional statement: if _cond is true, then the value is
STk _true, otherwise it is STk_false.

6.5.2. Fixnums

Fixnums are not allocated but have their two least significant bits set to 1 (in Lisp-parlance, it has
01 as its tag).
* INTP(0) - returns STklos_true if o is a Scheme integer or STklos_false otherwise

* MAKE_INT(n) - takes a long C number and turns it into an SCM integer object. Actually, this will
shift the number to the left by two positions and insert the tag If we could represent numbers as
binary in C, it would be like this:

MAKE INT( )

o INT_VAL(0) - returns the value of the fixnum o, as a C long value (the opposite of the previous
operation)

6.6. Boxed types

Boxed types are anything except for fixnums, small objects and small constants. They are tagged
with 00.

BOXED_OBJP(0) —true if o is a boxed object

BOXED_TYPE_EQ(o, t) — checks wether o is a boxed object of type t

BOXED_TYPE(0) — returns the type of boxed object o

BOXED_INFO - returns the information of boxed object o

The type definition for all possible types, in stklos.h, is self-explanatory:

typedef enum {
tc_not_boxed--1,
tc_cons, tc_integer, tc_real, tc_bignum, tc_rational,
tc_complex, tc_symbol, tc_keyword, tc_string, tc_module,

tc_instance, tc_closure, tc _subr@, tc subr1, tc_subr2,

tc_subr3, tc_subr4, tc_subr5, tc_subr@1, tc_subri2,

tc_subr23, tc_vsubr, tc_apply, tc_vector, tc_uvector,
tc_hash_table, tc_port, tc_frame, tc_next_method, tc_promise,
tc_regexp, tc_process, tc_continuation, tc_values, tc_parameter,

13



tc_socket, tc_struct_type, tc_struct, tc_thread, tc_mutex,
tc_condv, tc_box, tc_ext_func, tc_pointer, tc_callback,

tc_last _standard
} type_cell;

6.6.1. Lists

Here are some primitives for lists, for example:

CAR(p) — equivalent to Scheme car: returns the car of p (an SCM object)

CDR(p) — equivalent to Scheme cdr: returns the car of p (an SCM object, which certainly is a list)

CONSP(p) - equivalent to Scheme cons?

NULLP(p) - equivalent to Scheme null?

» STk_cons - equivalent to Scheme cons

6.6.2. Strings

Another example are strings. They are defined as the following structure:

struct string_obj {
stk_header header;
int space;

int size;
int length;
char “chars;

Then, some primitives:

The following primitives are defined in a str.c, but stklos.h is used by several files use them, so
they’re included with EXTERN_PRIMITIVE:

EXTERN_PRIMITIVE("string=?", streq, subr2, (SCM s1, SCM s2));
EXTERN_PRIMITIVE("string-ref", string_ref, subr2, (SCM str, SCM index));

EXTERN_PRIMITIVE("string-set!", string_set, subr3, (SCM str, SCM index, SCM value));
EXTERN_PRIMITIVE("string-downcase!", string_ddowncase, vsubr, (int argc, SCM “argv));

14



6.7. Dynamically loadable modules

See some examples in etc/

6.8. Input and output from C

The input and output functions are defined in sio.c, and declared in stklos.h. For example,

o STk_getc(SCM port) for reading a single character

» STk_get_character(SCM port) for reading a single character (result may be a wide char)

o STk_putc(int c, SCM port) for printing a single character

o STk_put_character(int ¢, SCM port) for printing a single character (maybe a wide char)

» STk_puts(const char *s, SCM port) for printing a C string

» STk_putstring(const char *s, SCM port) for printing a Scheme string

o STk_print(SCM exp, SCM port, int mode) for printing Scheme objects

o STk_print_star(SCM exp, SCM port, int mode) for circular structures
All printing procedures have a port argument. This should be a Scheme object of the type port, and
there are also already defined ports for standard output and error, STk_stdout and STk_stderr. For

reading there is also STk_stdin. These standard ports are defined in fport.c, and declared (as
extern) in stklos.h. They are all initialized in the function STk_init_fport in fport.c.

Some printing procedures have a mode argument. The two allowed values for this are WRT_MODE and
DSP_MODE, which correspond to "write mode" (which will write the raw representation of objects)
and "display mode" (which will do pretty-printing). The difference can be clearly seen in the
printstring function in print.c:

static void printstring(SCM s, SCM port, int mode)

{
if (mode DSP_MODE) {

STk_putstring(s, port);
} else {

}

6.9. Creating new types

6.9.1. Example: SRFI-25
We’ll be using SRFI-25 as an example. In that SRFI, am array type is created.

* Create a C struct whose first field is of type stk_header

struct array_obj {

15



stk_header header;
int shared;
int “orig_share_count;

MUT_FIELD(share_cnt_lock);
MUT_FIELD(“share_cnt_lock addr);

long size;

long length;

int rank;

long offset;

long “shape;

long "multipliers;
SCM  “data_ptr;

The fields in the struct may contain both C and Scheme elements (the Scheme elements have SCM
types).

° Maybe create some accessor macros

Be mindful of thread-related things: not all STklos builds have threading enabled!

* Create an extended type descriptor which contains the type name, and pointers to functions to
print and compare elements:




static void print_array(SCM array, SCM port, int mode)
{

static SCM test_equal_array(SCM x, SCM y)
{

static struct extended_type_descr xtype_array - {
.name "array",
.print - print_array,
.equal - test_equal_array

+

» At the end of your C code, inside the MODULE_ENTRY_START part, initialize an element of the
new type: tc_array = STk_new_user_type(&xtype_array);

* Create a describing procedure:

(%user-type-proc-set! 'array 'describe
(lambda (x port)
(format port "an array of rank ~A and size ~A"
(array-rank x)
(array-size x))))

* Define a class, and associate it with the type name you have created.




(define-class <array> (<top>) ())
(export <array>)

(%user-type-proc-set! 'array 'class-of <array>)

« If objects of the new type will have a printed representation, create a reader procedure:

(define-reader-ctor '<array>
(lambda args
(apply array (apply shape (car args)) (cdr args))))

6.9.2. More about creating new types

The structure for extended type descriptors is defined in stklos.h, in section "EXTEND.C":

struct extended_type_descr {
char “name;
void (“print)(SCM exp, SCM port, int mode);
SCM  (equal)(SCM o1, SCM 02);

SCM  ("eqv)(SCM o1, SCM 02);
SCM class_of;
SCM  describe_proc;

As can be seen, there are other fields besides name, print and equal that can be customized. For
example, the describe behavior, which was defined in Scheme for SRFI-25, could have been
implemented in C.

Immediately below the definition of this structure, there are also some useful macros and function
declarations for dealing with extended types.

18



Chapter 7. Continuations

One macro and two functions are declared in vm.h that can be used to capture, check and restore
continuations:

» CONTP(k) verifies (as expected) wether k is a continuation object
e SCM STk _make _continuation(void) returns the current continuation

o SCM STk_restore_cont(SCM cont, SCM val) restores continuation cont, passing it the value val

There is also one function in vm.c which is not exported:

DEFINE_PRIMITIVE("%fresh-continuation?". fresh_continuationp, subr1, (SCM obj))

return MAKE_BOOLEAN(CONTP(obj) && (((struct continuation_obj *) obj)->fresh))

Their behavior is better illustrated by an example in Scheme:

stklos> (define c #f)
(let ((a 1)
(b 2))
(format #t "start~%")
(set! ¢ (%make-continuation))
(set! a (+ 1 a))
(format #t "~a ~a~%" a b))

start

stklos> (%continuation? c)
it

stklos> c
[continuation (C=3992 S=1512) c069e000]

stklos> (%fresh-continuation? c)
#t

stklos> (%restore-continuation c¢ c)
stklos> (%fresh-continuation? c)
#Hf

stklos> (%restore-continuation c¢ c)

stklos> (%restore-continuation c¢ c)




stklos> (%restore-continuation ¢ c)

20



Chapter 8. The virtual machine

See the file vm.adoc for a description of the opcodes.

21



Chapter 9. Compiler and optimizations

9.1. The compiler

The compiler is in the file 1ib/compiler.stk.
There is a compile procedure at the end of the file, whose logic is very simple:

1. expand macros

2. compile special forms

3. if what’s left is a symbol, compile a call

4. if it’s not a symbol, compile it as a constant

In the rest of the file, there are procedures to compile different special forms and inlinable
primitives.

The code is generated as a list, in the code-instr global variable in the STKLOS-COMPILER module. The
procedure emit conses one more instruction on the code (which will later be reversed, of course)

9.2. Peephole optimizer

STklos uses a peephole optimzier, located in the file 1ib/peephole.stk. This optimizer will transform
several instruction patterns in the generated code into more efficient ones. For example:

((and (eq? i1 'SMALL-INT) (eq? i2 'PUSH))
(replace-2-instr code (list 'INT-PUSH (this-argl code))))

This transforms two instructions (‘load a small integer into ‘val, then push it onto the stack")
into one single instruction (push an integer onto the stack).

The peephole optimizer also reduces the size of the bytecode:

((and (eq? i1 "RETURN) (eq? i2 'RETURN))
(replace-2-instr code (list 'RETURN)))

This will turn two adjacent RETURN instructions into a single one, making the object file smaller. This
is valid because there won’t be any GOTO pointing to the second instruction; if this was the case, then
the code would have a label between the two "RETURN s.

Another example is GOTO optimization:

22



((eq? i1 'GOTO)

(set! code (optimize-goto code)))

The procedure optimize-goto-code, also in the file peephole.stk, will perform the transformations
indicated in the comments.

The input code is represented as a list. Some relevant definitions are in the beginning of the file:

(label? code)
(this-instr code)
(next-instr code)

(this-arg1 code)
(this-arg2 code)
(next-arg1 code)
(next-arg2 code)

23



Chapter 10. Garbage collection

STklos uses the Boehm-Demers-Weiser garbage collector. The wrapper for the GC is located in the
header file src/stklos. h:

void STk_gc_init(void);

» STk_must_malloc - used to allocate structured objects.

e STk_must_malloc_atomic - used when there won’t be any pointers inside the object, and we don’t
want to confuse the GC with patterns that are supposed to be just a bignum, but " "look like
apointer". Used for strings, numbers etc.

» STk_register_finalizer will register a finalizer function f, which will be called when the object
at ptr is collected.

24



	Hacking STklos
	Table of Contents
	Chapter 1. Basic editor configuration
	Chapter 2. Directories
	Chapter 3. Basic debugging
	3.1. STK_DEBUG
	3.2. Other debugging primitives in Scheme
	3.3. C debugging

	Chapter 4. STklos initialization
	Chapter 5. Adding simple modules and SRFIs
	5.1. Adding modules
	5.2. Module placement in the tree
	5.3. Adding SRFIs
	5.4. Mixed SRFIs (Scheme and C)
	5.5. Documentation

	Chapter 6. Writing primitives in C
	6.1. Calling Scheme primitives
	6.2. Returning multiple values
	6.3. Using multiple returned values
	6.4. Errors
	6.5. Unboxed types
	6.6. Boxed types
	6.7. Dynamically loadable modules
	6.8. Input and output from C
	6.9. Creating new types

	Chapter 7. Continuations
	Chapter 8. The virtual machine
	Chapter 9. Compiler and optimizations
	9.1. The compiler
	9.2. Peephole optimizer

	Chapter 10. Garbage collection

